Classroom Resources: Energy & Thermodynamics
Filter by:
1 – 4 of 4 Classroom Resources
-
Catalysts, Order of Reaction , Activation Energy, Lewis Structures, Resonance, Molecular Geometry, Activation Energy, Energy Diagrams | High School
Lesson Plan: The Downside to Catalysts - An Exploration of CFC's on the Ozone Layer Mark as Favorite (18 Favorites)
In this lesson students will make observations of a colorful homogenous catalyst and intermediate in a reaction demonstration that will spark their interests. They will then work in teams to analyze graphs and data sets in order to make a real-world connection to AP topics in kinetics such as catalysts, intermediates and reaction mechanisms by exploring how CFCs work to break down the ozone layer. Students will also investigate and discuss this environmental issue.
-
Reaction Rate, Activation Energy, Catalysts, Combustion, Reaction Rate | High School
Demonstration: Rates of Reactions Mark as Favorite (7 Favorites)
In this series of demonstrations, students will be introduced to factors that affect the rates of chemical reactions. They will observe and record their observations, while also describing the rate-influencing factor for each demonstration as well as evidence supporting whether or not the reaction rate was increased or decreased by the factor.
-
Reduction, Oxidation, Redox Reaction, Catalysts, Activation Energy, Combustion | Elementary School, Middle School, High School
Video: Catalytic Converters Video Mark as Favorite (5 Favorites)
This video investigates the role of a catalytic converter and its corresponding chemical reactions within a vehicle. Students will learn about both oxidation and reduction reactions and how they, in combination with a catalyst, can impact the molecules released in a car’s exhaust.
-
Activation Energy, Temperature, Exothermic & Endothermic, Heat, Equilibrium Constants, Establishing Equilibrium, Le Châtelier's Principle, Reaction Quotient | High School
Activity: Reversible Reactions Simulation Mark as Favorite (6 Favorites)
In this activity, students will investigate how temperature, activation energy, initial amounts of products and reactants, and type of reaction (exo- or endothermic) effect the equilibrium position of a reaction using a simulation.